Beyond Dyadic Interactions: Assessing Trust Networks in Multi-Human-Robot Teams

Aakash Yadav and Ranjana K. Mehta

Industrial and Systems Engineering, University of Wisconsin - Madison

About the authors

Aakash (@nimrobotics) a third-year Ph.D. candidate in the at UW-Madison. His research interests span human-robot interaction, neuroergonomics, and affective computing.

Background

Results

All human team vs multi-human robot team

Reliable vs unreliable multi-human robot team

٩	Separate	
	workspace	

• No human

 Separate 	Same workspace
workspace	 Same part
Shared part	Single human

• Same workspace • Same goal

• Multiple humans

Human Robot Teaming

• **Trust** in human-robot collaboration can impact system performance, acceptance, safety, and utilization

- Undertrust can lead to underutilization of the robot's capability
- **Overtrust** can pose a critical safety problem
- In all human teams, intrateam trust has been shown to significantly impact team performance
- **mHRT**: interdependence, common goal, distinct roles
- Need for mHRT
 - Robots:
 - mapping, navigation, sensor suite, payload, communication beacon
 - Reduce response and recovery time, operate in hot zones
 - "it takes two humans to operate one robot" in emergency response

Methods

46 participants (20 females, 26 males) to form n = 23 teams (7 malemale, 4 female-female, and 12 malefemale)

Navigator Guided team by suggesting directions to locate victims

- Team trust ratings did not change with the addition of a reliable robot.
 - Team trust decreased when working with an unreliable robot.

Situation awareness, fatigue, and performance measures

SART

Reliable vs unreliable multi-human robot team

Mission Specialist cooperated with team members to lead team, made critical decisions, log victims

Task: Locate and mark victims in a burning building in set time.

(researcher)

- Working with reliable robot reduced situation awareness.
- Fatigue perception increased with unreliable robot.
- Distance traveled and victims located increased in unreliable conditions.

Path trajectories across the trials

Key takeaways

- We designed a virtual task environment to assess trust networks in multihuman-robot teams.
- Team trust remained intact with the addition of a reliable robot to the team, even though the robot navigator was trusted less.
- Introducing a robot teammate led to changes in team behaviors, such as reduced travel, warranting in-depth analysis of behavior and performance metrics. • Emergent behaviors in mHRT involved adaptive strategies by engaging in continuous independent exploration, highlighting the dynamic adaptation within teams to overcome challenges and optimize task outcomes. • Future work will focus on performing trust assessments in a real-world environment.

References

- Robin R Murphy. 2014. Disaster robotics. MIT press.
- M.C. Cohen, M. Demir, E.K. Chiou, and N.J. Cooke. 2021. The Dynamics of Trust and Verbal Anthropomorphism in Human-Autonomy Teaming (2021 IEEE 2nd International Conference on Human-Machine Systems (ICHMS)). Piscataway, NJ, USA, 6 pp.
- Aakash Yadav, Sarah K Hopko, Yinsu Zhang, and Ranjana K Mehta. 2022. Multimodal Bio-Behavioral Approaches to Study Trust in Human-Robot Collaboration. IEEE HRI 4th Annual Workshop on Novel and Emerging Test Methods & Metrics for Effective HRI (2022).
- Robin R Murphy. 2004. Human-robot interaction in rescue robotics. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 34, 2 (2004), 138–153 Image source (top left robots): Kawasaki, Universal Robots

